organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Isopropyl-5-methylcyclohexyl diphenylphosphonamidate

Fan-Jie Meng and Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: literabc@hotmail.com

Received 2 March 2011; accepted 22 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.104; data-to-parameter ratio = 15.1.

In the title compound, $C_{22}H_{30}NO_2P$, the P atom has an irregular tetrahedral geometry. In the crystal, molecules are connected by $N-H \cdots O$ hydrogen-bonding interactions, giving rise to a chain along the b axis. The phenyl ring of the anilino group is twisted by $77.40 (16)^{\circ}$ relative to the other phenyl ring. The absolute configuration of phosphorus is $S_{\rm p}$.

Related literature

For applications of chiral phosphinoylimines, see: Benamer et al. (2010). For related structures, see: Balakrishna et al. (2001). For the use of chiral organophosphorus compounds in metalcatalyzed and organocatalytic reactions, see: Steinberg (1950).

Experimental

Crystal data $C_{22}H_{30}NO_2P$ $M_r = 371.44$

Monoclinic, P2 a = 8.6934 (8) Å b = 5.4716(5) Å c = 22.100 (2) Å $\beta = 101.006 \ (1)^{\circ}$ V = 1031.90 (17) Å³ Z = 2

Data collection

Siemens SMART CCD area-	5183 measu
detector diffractometer	3589 indepe
Absorption correction: multi-scan	2814 reflect
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.021$
$T_{\min} = 0.936, T_{\max} = 0.975$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.104$	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.09	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
3589 reflections	Absolute structure: Flack (1983),
238 parameters	1550 Friedel pairs
1 restraint	Flack parameter: -0.06 (12)

Mo $K\alpha$ radiation

 $0.45 \times 0.36 \times 0.17 \text{ mm}$

measured reflections independent reflections

reflections with $I > 2\sigma(I)$

 $\mu = 0.15 \text{ mm}^{-1}$

T = 298 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H6 \cdots O2^i$	0.86	2.24	3.053 (3)	157
Summatry and a (i)	v. 1			

Symmetry code: (i) x, y - 1, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the Natural Science Foundation of China (No. 20772055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2285).

References

Balakrishna, M. S., Abhyankar, R. M. & Walawalker, M. G. (2001). Tetrahedron Lett. 42, 2733-2734

Benamer, M., Turcaud, S. & Royer, J. (2010). Tetrahedron Lett. 51, 645-648. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Steinberg, G. M. (1950). J. Org. Chem. 15, 637-647.

Acta Cryst. (2011). E67, o998 [doi:10.1107/S1600536811010580]

2-Isopropyl-5-methylcyclohexyl diphenylphosphonamidate

F.-J. Meng and C.-Q. Zhao

Comment

The catalytic asymmetric synthesis of chiral organophosphorus compounds has attracted considerable attention in the past decades, for these compounds can serve as precursors of many biologically active molecules and play an important role in metal-catalyzed and organocatalytic reactions (Steinberg, 1950). The molecular structure of the P-chiral title compound, (I), is composed of 2-isopropyl-5-methylcyclohexyl phenylphosphinate core with phenylamine (Fig. 1.). The configuration of the central P atom is S. The four groups around the P atom form a irregular tetrahedron (Benamer *et al.*, 2010). The torsion angles of the O(2)–P(1)–N(1)–C(3) and O(1)–P(1)–N(1)–C(3) are -45.0 (3) Å and -170.0 (2) Å. In the crystal structure (Balakrishna *et al.*, 2001), intermolecular N—H···O hydrogen bonds connect molecules into a one-dimensional chain (Table 1., Fig. 2.).

Experimental

Carbon tetrachloride was added to a solution of 2-isopropyl-5-methylcyclohexyl phenylphosphinate dissolved in dry ether and phenylamine. The reaction mixture was stirred for 38 h at room temperature. After washing with water, the resulting solution was purified by preparative TLC on silica gel to afford optically pure product. Single crystals of the title compound suitable for x-ray diffraction were obtained by slow evaporation of ether solution.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93–0.98 Å, with $U_{iso}(H) = 1.5 U_{eq}(methyl)$ and $U_{iso}(H) = 1.2 U_{eq}(C)$ for all other H atoms.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The one–dimensional chain of (I), linked by N—H…O hydrogen bonds.

N-({[5-methyl-2-(propan-2-yl)cyclohexyl]oxy}(phenyl)phosphoryl)aniline

Crystal data	
C ₂₂ H ₃₀ NO ₂ P	F(000) = 400
$M_r = 371.44$	$D_{\rm x} = 1.195 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1942 reflections
a = 8.6934 (8) Å	$\theta = 2.7 - 25.2^{\circ}$
<i>b</i> = 5.4716 (5) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 22.100 (2) Å	T = 298 K
$\beta = 101.006 \ (1)^{\circ}$	Block, colorless
$V = 1031.90 (17) \text{ Å}^3$	$0.45\times0.36\times0.17~mm$
<i>Z</i> = 2	

Data collection

Siemens SMART CCD area-detector diffractometer	3589 independent reflections
Radiation source: fine-focus sealed tube	2814 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.936, T_{\max} = 0.975$	$k = -6 \rightarrow 6$
5183 measured reflections	$l = -26 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.0269P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
3589 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$

238 parameters

1 restraint

methods

 $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1550 Friedel pairs Primary atom site location: structure-invariant direct Flack parameter: -0.06 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	л	Y	Z	$U_{\rm iso}^*/U_{\rm eq}$
C1	-0.0896 (4)	0.6404 (9)	0.08739 (15)	0.0830 (12)
H1A	-0.0743	0.4702	0.0778	0.100*
H1B	-0.1840	0.6970	0.0602	0.100*
P1	0.36057 (8)	0.79230 (14)	0.29338 (3)	0.03738 (19)
C2	0.5704 (3)	0.8039 (6)	0.30983 (11)	0.0402 (6)
O2	0.2888 (2)	1.0296 (3)	0.30075 (8)	0.0446 (5)
C3	0.2897 (3)	0.5828 (5)	0.39742 (11)	0.0351 (6)
01	0.3227 (2)	0.6846 (4)	0.22586 (8)	0.0436 (5)
C4	0.3333 (4)	0.7801 (7)	0.49563 (12)	0.0570 (8)
H4	0.3754	0.9087	0.5210	0.068*
C5	0.3513 (3)	0.7748 (7)	0.43486 (11)	0.0459 (7)
Н5	0.4046	0.9000	0.4193	0.055*
N1	0.3040 (3)	0.5712 (4)	0.33461 (10)	0.0424 (6)
H6	0.2807	0.4340	0.3161	0.051*
C7	0.0423 (3)	0.6000 (7)	0.19730 (13)	0.0543 (8)
H7A	0.0304	0.6289	0.2395	0.065*
H7B	0.0660	0.4282	0.1934	0.065*
C8	0.6462 (4)	0.9995 (6)	0.28841 (14)	0.0566 (9)
H8	0.5884	1.1207	0.2648	0.068*
C9	0.2115 (3)	0.3967 (6)	0.42092 (13)	0.0458 (8)
H9	0.1710	0.2659	0.3960	0.055*
C10	0.1771 (3)	0.7509 (6)	0.18402 (11)	0.0439 (8)
H10	0.1549	0.9240	0.1899	0.053*
C11	0.2538 (4)	0.5968 (7)	0.51885 (14)	0.0611 (9)
H11	0.2408	0.6024	0.5596	0.073*
C12	0.6582 (4)	0.6285 (6)	0.34548 (13)	0.0507 (8)
H12	0.6085	0.4972	0.3604	0.061*
C13	0.2020 (4)	0.7132 (6)	0.11828 (12)	0.0534 (9)
H13	0.2114	0.5362	0.1132	0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

C14	0.1938 (4)	0.4062 (7)	0.48197 (14)	0.0590 (9)
H14	0.1406	0.2815	0.4979	0.071*
C15	0.8088 (4)	1.0140 (7)	0.30229 (16)	0.0660 (10)
H15	0.8597	1.1438	0.2873	0.079*
C16	-0.1120 (4)	0.6599 (7)	0.15376 (15)	0.0641 (10)
H16	-0.1400	0.8292	0.1613	0.077*
C17	0.3526 (5)	0.8226 (9)	0.10465 (16)	0.0738 (11)
H17	0.4384	0.7565	0.1356	0.089*
C18	0.0482 (4)	0.7874 (9)	0.07536 (13)	0.0765 (10)
H18A	0.0285	0.9595	0.0812	0.092*
H18B	0.0590	0.7642	0.0329	0.092*
C19	0.8948 (4)	0.8369 (7)	0.33812 (16)	0.0634 (11)
H19	1.0035	0.8479	0.3477	0.076*
C20	0.3841 (5)	0.7449 (10)	0.04193 (16)	0.1023 (16)
H20A	0.3830	0.5697	0.0392	0.153*
H20B	0.4847	0.8050	0.0370	0.153*
H20C	0.3044	0.8109	0.0100	0.153*
C21	0.3603 (7)	1.0937 (9)	0.1111 (3)	0.1244 (19)
H21A	0.2736	1.1659	0.0835	0.187*
H21B	0.4567	1.1518	0.1013	0.187*
H21C	0.3555	1.1379	0.1527	0.187*
C22	-0.2440 (5)	0.4933 (9)	0.1665 (2)	0.0947 (14)
H22A	-0.2187	0.3263	0.1595	0.142*
H22B	-0.3403	0.5366	0.1396	0.142*
H22C	-0.2556	0.5128	0.2086	0.142*
C23	0.8201 (4)	0.6464 (7)	0.35934 (15)	0.0633 (10)
H23	0.8783	0.5267	0.3834	0.076*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.074 (3)	0.110 (3)	0.054 (2)	0.010 (3)	-0.0144 (19)	-0.006 (2)
P1	0.0433 (4)	0.0378 (4)	0.0310 (3)	0.0023 (4)	0.0073 (3)	-0.0027 (4)
C2	0.0466 (16)	0.0431 (15)	0.0316 (13)	-0.0011 (18)	0.0092 (11)	-0.0062 (16)
O2	0.0501 (13)	0.0402 (11)	0.0438 (11)	0.0053 (10)	0.0098 (9)	-0.0045 (10)
C3	0.0356 (15)	0.0374 (15)	0.0322 (14)	0.0056 (13)	0.0061 (11)	-0.0004 (13)
O1	0.0471 (11)	0.0513 (11)	0.0321 (10)	0.0098 (10)	0.0065 (8)	-0.0039 (8)
C4	0.083 (2)	0.0498 (17)	0.0370 (15)	0.002 (2)	0.0088 (14)	-0.0086 (18)
C5	0.0541 (17)	0.0452 (16)	0.0381 (15)	-0.0033 (18)	0.0077 (12)	-0.0003 (17)
N1	0.0543 (16)	0.0373 (13)	0.0365 (13)	-0.0036 (12)	0.0110 (11)	-0.0059 (11)
C7	0.052 (2)	0.069 (2)	0.0417 (17)	0.0033 (18)	0.0096 (14)	-0.0063 (17)
C8	0.057 (2)	0.056 (2)	0.056 (2)	-0.0012 (18)	0.0110 (16)	0.0024 (17)
C9	0.052 (2)	0.0386 (16)	0.0476 (18)	-0.0023 (14)	0.0106 (15)	0.0001 (14)
C10	0.0489 (17)	0.048 (2)	0.0322 (13)	0.0108 (16)	0.0015 (12)	-0.0048 (14)
C11	0.087 (3)	0.064 (2)	0.0363 (17)	0.011 (2)	0.0221 (17)	0.0024 (18)
C12	0.049 (2)	0.054 (2)	0.0504 (18)	0.0049 (16)	0.0124 (15)	0.0018 (16)
C13	0.070 (2)	0.058 (2)	0.0328 (15)	0.0075 (17)	0.0113 (15)	0.0003 (14)
C14	0.074 (3)	0.058 (2)	0.051 (2)	0.0003 (18)	0.0259 (18)	0.0130 (18)

C15 C16 C17 C18 C19 C20 C21 C22 C23	0.055 (2) 0.055 (2) 0.081 (3) 0.090 (3) 0.0388 (19) 0.116 (3) 0.155 (5) 0.060 (3) 0.056 (2)	0.069 (2) 0.076 (2) 0.087 (3) 0.098 (3) 0.085 (3) 0.141 (5) 0.084 (3) 0.114 (4) 0.072 (3)	0.077 (2) 0.057 (2) 0.058 (2) 0.0375 (17) 0.066 (2) 0.062 (2) 0.153 (5) 0.106 (3) 0.059 (2)	$\begin{array}{c} -0.021 \ (2) \\ 0.005 \ (2) \\ 0.010 \ (3) \\ 0.013 \ (3) \\ 0.002 \ (2) \\ 0.019 \ (3) \\ -0.012 \ (4) \\ -0.005 \ (3) \\ 0.017 \ (2) \end{array}$	$\begin{array}{c} 0.0205 \ (19) \\ -0.0003 \ (16) \\ 0.0235 \ (18) \\ 0.0002 \ (16) \\ 0.0081 \ (16) \\ 0.047 \ (2) \\ 0.076 \ (4) \\ 0.005 \ (2) \\ 0.0045 \ (17) \end{array}$	-0.011 (2) -0.0064 (18) 0.015 (2) 0.006 (2) -0.025 (2) 0.022 (3) 0.010 (3) -0.012 (3) -0.0031 (19)
Geometric paran	neters (Å °)					
		1 500 (5)	011	C1 4	1.244	
CI-CI8		1.508 (5)	CII-	C14	1.364	(5)
CI - CI6		1.520 (4)	C11–	-H11	0.9300	
CI—HIA		0.9700	C12-	-023	1.386	(4)
CI-HIB		0.9700	C12-	-H12	0.9300	(5)
PI-02		1.463 (2)	C13-	-017	1.521	(5)
PI-OI		1.5795 (19)	C13-	-018	1.539	(4)
PI - NI		1.045 (2)	C13-	-H13 1114	0.9800	
PI = C2		1.792(3)	C14-	-П14 С19	1.278	(5)
$C_2 = C_{12}$		1.376 (4)	C15-	-019	1.578	(3)
$C_2 = C_8$		1.380 (4)	C15-	-113	1 533	(5)
$C_{3} = C_{5}$		1.380(4)	C16-		0.9800	(3)
C3—N1		1.380(4) 1.419(3)	C10-	-021	1 490	(7)
01-C10		1.417 (3)	C17-	-C20	1.490	(7)
C4-C11		1.403(5) 1.372(5)	C17-	-H17	0.9800	(5)
C4-C5		1.372(3) 1 382(4)	C18-	-H18A	0.9700	
C4—H4		0.9300	C18-	-H18B	0.9700)
С5—Н5		0.9300	C19-	-C23	1 358	(5)
N1—H6		0.8600	C19-	–H19	0.9300)
C7—C10		1 507 (4)	C20-	-H20A	0.9600)
C7—C16		1.530 (4)	C20-	-H20B	0.9600)
C7—H7A		0.9700	C20–	-H20C	0.9600)
С7—Н7В		0.9700	C21–	-H21A	0.9600)
C8—C15		1.390 (4)	C21–	-H21B	0.9600)
С8—Н8		0.9300	C21–	-H21C	0.9600)
C9—C14		1.388 (4)	C22–	-H22A	0.9600)
С9—Н9		0.9300	C22–	–H22B	0.9600)
C10-C13		1.523 (4)	C22–	-H22C	0.9600)
C10—H10		0.9800	C23–	-H23	0.9300)
C18—C1—C16		112.6 (3)	C17–		117.0	(3)
C18—C1—H1A		109.1	C10–	-C13-C18	106.7	(2)
С16—С1—Н1А		109.1	C17–	-С13—Н13	105.8	
C18—C1—H1B		109.1	C10–	C13H13	105.8	
C16—C1—H1B		109.1	C18–	-С13-Н13	105.8	
H1A—C1—H1B		107.8	C11–	-С14-С9	120.6	(3)
O2—P1—O1		114.83 (11)	C11–	C14H14	119.7	
O2—P1—N1		114.34 (11)	С9—	C14—H14	119.7	

O1—P1—N1	102.61 (11)	C19—C15—C8	120.3 (3)
O2—P1—C2	112.65 (14)	C19—C15—H15	119.9
O1—P1—C2	103.04 (11)	С8—С15—Н15	119.9
N1—P1—C2	108.29 (14)	C1—C16—C7	109.5 (3)
C12—C2—C8	119.1 (3)	C1—C16—C22	112.0 (3)
C12—C2—P1	121.5 (2)	C7—C16—C22	110.7 (3)
C8—C2—P1	119.3 (2)	C1—C16—H16	108.2
C9—C3—C5	119.9 (2)	С7—С16—Н16	108.2
C9—C3—N1	118.5 (3)	C22—C16—H16	108.2
C5—C3—N1	121.6 (3)	C21—C17—C20	110.6 (4)
C10—O1—P1	120.25 (16)	C21—C17—C13	113.4 (4)
C11—C4—C5	120.4 (3)	C20—C17—C13	112.4 (4)
С11—С4—Н4	119.8	C21—C17—H17	106.6
C5—C4—H4	119.8	С20—С17—Н17	106.6
C3—C5—C4	119.7 (3)	С13—С17—Н17	106.6
С3—С5—Н5	120.1	C1—C18—C13	112.1 (3)
C4—C5—H5	120.1	C1—C18—H18A	109.2
C3—N1—P1	126.9 (2)	C13—C18—H18A	109.2
C3—N1—H6	116.5	C1C18H18B	109.2
P1—N1—H6	116.5	C13—C18—H18B	109.2
C10—C7—C16	112.4 (3)	H18A—C18—H18B	107.9
С10—С7—Н7А	109.1	C23—C19—C15	119.7 (3)
С16—С7—Н7А	109.1	С23—С19—Н19	120.2
С10—С7—Н7В	109.1	С15—С19—Н19	120.2
С16—С7—Н7В	109.1	C17—C20—H20A	109.5
H7A—C7—H7B	107.9	С17—С20—Н20В	109.5
C2—C8—C15	119.9 (3)	H20A—C20—H20B	109.5
С2—С8—Н8	120.1	С17—С20—Н20С	109.5
С15—С8—Н8	120.1	H20A—C20—H20C	109.5
C3—C9—C14	119.5 (3)	H20B—C20—H20C	109.5
С3—С9—Н9	120.2	C17—C21—H21A	109.5
С14—С9—Н9	120.2	C17—C21—H21B	109.5
O1—C10—C7	110.6 (2)	H21A—C21—H21B	109.5
O1-C10-C13	107.8 (2)	C17—C21—H21C	109.5
C7—C10—C13	111.6 (2)	H21A—C21—H21C	109.5
O1—C10—H10	108.9	H21B—C21—H21C	109.5
С7—С10—Н10	108.9	C16—C22—H22A	109.5
С13—С10—Н10	108.9	C16—C22—H22B	109.5
C14—C11—C4	119.8 (3)	H22A—C22—H22B	109.5
C14—C11—H11	120.1	C16—C22—H22C	109.5
C4—C11—H11	120.1	H22A—C22—H22C	109.5
C2—C12—C23	120.4 (3)	H22B—C22—H22C	109.5
С2—С12—Н12	119.8	C19—C23—C12	120.7 (3)
C23—C12—H12	119.8	С19—С23—Н23	119.7
C17—C13—C10	114.8 (3)	С12—С23—Н23	119.7
O2—P1—C2—C12	134.9 (2)	C5—C4—C11—C14	0.9 (5)
O1—P1—C2—C12	-100.8 (2)	C8—C2—C12—C23	-0.5 (4)
N1—P1—C2—C12	7.4 (3)	P1—C2—C12—C23	-177.7 (2)
O2—P1—C2—C8	-42.3 (3)	O1—C10—C13—C17	-47.9 (4)

O1—P1—C2—C8	82.0 (2)	C7—C10—C13—C17	-169.6 (3)
N1—P1—C2—C8	-169.8 (2)	O1-C10-C13-C18	-179.3 (3)
O2—P1—O1—C10	-27.3 (2)	C7-C10-C13-C18	59.1 (3)
N1—P1—O1—C10	97.4 (2)	C4—C11—C14—C9	-0.5 (5)
C2—P1—O1—C10	-150.1 (2)	C3—C9—C14—C11	-0.4 (5)
C9—C3—C5—C4	-0.4 (4)	C2-C8-C15-C19	-1.1 (5)
N1—C3—C5—C4	179.4 (3)	C18—C1—C16—C7	-52.1 (5)
C11—C4—C5—C3	-0.5 (5)	C18-C1-C16-C22	-175.3 (3)
C9—C3—N1—P1	167.3 (2)	C10-C7-C16-C1	53.0 (4)
C5—C3—N1—P1	-12.5 (4)	C10-C7-C16-C22	177.0 (3)
O2—P1—N1—C3	-45.0 (3)	C10-C13-C17-C21	-62.8 (5)
O1—P1—N1—C3	-170.0 (2)	C18—C13—C17—C21	63.4 (5)
C2—P1—N1—C3	81.5 (2)	C10-C13-C17-C20	170.8 (3)
C12—C2—C8—C15	1.0 (4)	C18—C13—C17—C20	-63.0 (5)
P1-C2-C8-C15	178.2 (2)	C16-C1-C18-C13	57.0 (5)
C5—C3—C9—C14	0.8 (4)	C17—C13—C18—C1	171.6 (3)
N1—C3—C9—C14	-179.0 (3)	C10-C13-C18-C1	-58.3 (4)
P1	-81.0 (3)	C8—C15—C19—C23	0.7 (5)
P1-O1-C10-C13	156.7 (2)	C15-C19-C23-C12	-0.2 (5)
C16—C7—C10—O1	-178.9 (2)	C2-C12-C23-C19	0.1 (5)
C16—C7—C10—C13	-58.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H6···O2 ⁱ	0.86	2.24	3.053 (3)	157
Symmetry codes: (i) $x, y-1, z$.				

